基于希尔伯特-黄变换的激光微多普勒信号分析 与特征提取

彭明金 李 智

(四川大学电子信息学院,四川 成都 610065)

摘要 在振动目标的激光微多普勒信号分析中,基于联合时频谱的分析方法为目标的检测、分类和识别提供有用 信息,得到广泛运用。对于一般非线性和非平稳信号,传统的时频分析方法能有效地提取信号特征,但在强背景噪 声和弱调制信道条件下,具有很大局限性。引入希尔伯特-黄变换(HHT)作为一种新的微多普勒信号分析方法,分 析在强背景噪声和弱调制等信道下,HHT 在微多普勒信号中的特征提取。通过 Matlab 软件仿真,与平滑伪 Wigner-Ville 分布(SPWVD)比较,证明了 HHT 在微多普勒信号分析和特征提取中的有效性。 关键词 信号处理;微多普勒;希尔伯特-黄变换;经验模态分解;平滑伪 Wigner-Ville 分布;弱调制 中图分类号 O436 **文献标识码** A **doi**: 10.3788/CJL201340.0809004

Analysis and Feature Extraction of Laser Micro-Doppler Signatures Based on Hilbert-Huang Transforms

Peng Mingjin Li Zhi

(College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan 610065, China)

Abstract In the laser micro-Doppler signature analysis of vibrating targets, the joint time-frequency methods can provide useful information for target detection, classification and recognition. The analysis of the general nonlinear and non-stationary signal with traditional time-frequency analysis method can effectively extract signal characteristics. But there are great limitations in the strong background noise and weak modulation channel conditions. Hilbert-Huang transform (HHT) is employed as a new approach in micro-Doppler analysis. Simulation results in Matlab software show that it can achieve better performance than smoothed pseudo Wigner-Ville distribution (SPWVD) in different channel conditions.

Key words signal processing; micro Doppler; Hilbert-Huang transforms; empirical mode decomposition; smoothed pseudo Wigner-Ville distribution; weak modulation

OCIS codes 070.4340; 040.5160; 040.1880

1 引 言

被测目标和探测器之间由于相对运动而产生多 普勒频移的现象,被称为多普勒效应。除了相对运 动之外,被测目标本身存在其他运动,如飞机螺旋桨 的转动、飞行中导弹自身的转动及小幅摆动。由目 标自身运动引起的频率展宽现象称为微多普勒效 应^[1]。由于微多普勒现象能够帮助确定目标的多种 微动参数:目标运动速度、微动振幅以及微动频率 等,使研究微多普勒效应在目标探测、分类及识别领 域的应用成为当前研究的热点问题。其中如何进行 有效的目标微多普勒特征提取成为研究中的一个 难点^[2]。

由于振动产生的微多普勒特征是时间的函数, 属于非平稳信号的分析领域。时频分析能够确定特 定时间有哪些频率成分存在,在该领域得到广泛应 用。时频分布是时间和频率的联合函数,通过分析 时间、频率及能量之间的密切关系,提取信号中所包 含的特征信息,以揭示信号中所包含的频率分量及 其演化特性。其中尤其以科恩类分布的运用更为广 泛,常用的分析方法有 Wigner-Ville 分布(WVD)、

收稿日期: 2013-03-04; 收到修改稿日期: 2013-04-07

作者简介: 彭明金(1986-),男,硕士研究生,主要从事无线通信和嵌入式系统等方面的研究。E-mail:pmj1026@163.com **导师简介:** 李 智(1975-),男,副教授,硕士生导师,主要从事无线传感网络、智能传感与信号处理等方面的研究。 E-mail: lizhi@scu, edu. cn(通信联系人)

Choi-William 分布(CWD)、平滑伪 Wigner-Ville 分 布(SPWVD)等^[3]。然而科恩类分布在微多普勒分 析中具有以下局限:

1) 核函数的选择,抑制了 WVD 的交叉项问题,但同时降低了 WVD 的时频分辨率^[4]。

2)微多普勒在时频平面上是周期的,当探测器 接收到的信号被噪声或别的目标的反向散射污染 时,科恩类分布将很难从中提取微多普勒信号。一 个有效的分布,应该能够处理多成分信号的叠加并 抑制交叉信号项^[5]。

3)振动产生的微动对多普勒频率产生正弦调制。当微多普勒对频移进行的是弱调制,科恩类分布在正弦调制信号的特征提取的时频特性上具有局限性,无法有效估计信号的振动参数。

为了解决科恩类分布的局限性,引入希尔伯特-黄变换(HHT)。HHT 由 Huang 等^[6]在 1998 年为 分析非线性和非平稳信号时提出。HHT 通过经验 模态分解(EMD),从原始信号中提取需要的信号成 分,通过变换,能够得到精确的瞬时微多普勒时频 信息。

本文简要介绍了激光微多普勒原理及测量装置,并简述了 HHT 变换过程原理,最后在噪声信道和弱调制以及综合干扰下,进行了实验仿真和数据分析。

2 激光微多普勒原理及测量装置

目标的整体运动会使回波信号产生一个特定的 多普勒频移,然而其自身的振动又在多普勒频移的 基础上产生一个附加的频率调制,由于该附加的频 率调制相对多普勒频移较小,美国海军研究实验室 的 Chen^[7]将这种现象称为微多普勒效应,并从电磁 学角度建立了振动、自转、旋动、翻滚四种微动的模 型。基于此模型,从振动目标反射回来的正弦调制 信号 *s*(*t*) 为

 $s(t) = \rho \exp[j2\pi f_c t + j\beta \sin(2\pi f_v t)],$ (1) 式中: f_c 和 f_v 分别表示载波频率和目标的振动频 率; ρ 是目标的反射率,范围在0到1之间; β 为调制 指数, $\beta=4\pi D/\lambda_c$, λ_c 是载波的波长,D是在目标和 激光视距方向上的震荡位移。假设目标的振动方向 与视距一致,则D的值为目标的振幅,即 $D=d_v$ 。 根据(1)式,得到接收信号的瞬时频率f为

 $f = f_{e} + f_{micro-Doppler} = f_{e} + \beta f_{v} \cos(2\pi f_{v}t).$ (2) 从(2)式中可以清楚地看出,物体的规则振动产 生的微多普勒效应对相位进行了正弦调制,峰到峰 的多普勒偏差为 $2\beta f_v$,调制指数 β 正比于 D/λ_c 。

激光微多普勒振动测量实验系统如图 1 所示, 探测激光被分束器分为参考光束和测量光束,参考 光束由固定参考反射器反射;而测量光束由目标反 射器反射。被参考反射器反射的光束和有目标反射 器反射的光束又由分束器聚合,在光电检测器的表 面形成干涉。探测器从变化的干涉场将光信号转换 成电信号,再由数字存储示波器,得到混频差拍信 号^[8]。测量装置中的激光器波长为 632.8 nm。

图 1 激光微多普勒测量装置 Fig. 1 Laser Doppler vibration measurement system

3 HHT 原理

自 1998 年 Huang 等^[6]提出 HHT 理论以来, HHT 已经成功运用到海平面大气温度分析、地震 波数据分析、血压信号分析等。HHT 的基本思想 是把目标信号通过 EMD 成一定数量的本征模态函 数(IMF),然后对本征模态函数进行希尔伯特变换 得到希尔伯特谱。由于时频分布不再依靠卷积,所 以可以有效地解决在科恩类分布中由于核函数引起 的问题。而且 EMD 还可以自适应地滤除一些干扰 信号,为信号的特征提取带来很大的方便。通过这 种时频方法,在时频域可以得到更清晰的多普勒信 号^[9],从希尔伯特谱中可以有效地估计出目标的振 动参数。

3.1 经验模态分析

EMD 是基于信号局部极值特征的自适应分析 方法,目标是将时间信号 x(t)分解为一系列的 IMF,IMF 满足两个重要条件:1)信号零点的数目 和极值的数目相等或最多相差一个;2)任意一点 处,极小值包络和极大值包络的均值等于零。原始 的数据序列即可由这些 IMF 分量以及残余项 $r_n(t)$ 表示,即

$$x(t) = \sum_{j=1}^{n} C_j(t) + r_n(t).$$
 (3)

3.2 希尔伯特谱

EMD 的主要目的是对 IMF 作希尔伯特变换, 从而得到它的希尔伯特谱。作为时间、频率、能量的 三维谱,HHT 谱与传统的时频分析方法相比,能够 更精确地表现信号时频的分布细节。求得 IMF 分 量 $C_j(t)$ 的 解析信号 $Z_j(t) = C_j(t) + i\tilde{C}_j(t) =$ $a_j(t) \exp[i\theta_j(t)],其中虚部 \tilde{C}_j(t) 为 C_j(t)$ 的希尔伯 特变换。IMF $Z_j(t)$ 的 振 幅 $a_j(t) = [C_j^2(t) + \tilde{C}_j^2(t)]^{1/2}$,相位 $\theta_j(t) = \arctan \frac{\tilde{C}_j(t)}{C_j(t)}$,以及解析信号 的瞬时频率 $\omega_j(t) = \frac{d\theta_j(t)}{C_j(t)}$ 。通过上述求解,原始信 号可以表示成

$$x(t) = \operatorname{Re}\sum_{j=1}^{n} a_{j}(t) \exp\left[i\int \omega_{j}(t) dt\right], \quad (4)$$

式中 $a_j(t)$ 和 $\omega_j(t)$ 是时变的,成为时间的函数,而不 再是固定的常量,因此 HHT 谱具有刻画数据序列 在时间上变化规律的能力。

4 仿真与分析

微多普勒特征的提取,需要在时频域上能准确 地反映微多普勒的特征参数。由于严重的噪声干扰 或者在弱调制情况下,微多普勒特征难以提取, HHT 能很好地解决这些问题。在这部分假设三种 情况来证明 HHT 在处理微多普勒信号的优势: 1) 在强噪声环境下强调制(β>1)微多普勒信号信 噪比(SNR)的改善;2) 在无噪声弱调制(β≤1)情况 下微多普勒信号特征提取;3) 在更复杂和更接近实 际的情况下微多普勒信号的特征提取。通过与 SPWVD 的比较,证明了 HHT 的优越性和有效性。

4.1 强噪声背景下的微多普勒信号

假设微多普勒信号被高斯白噪声严重干扰,SNR 为0dB。对原始信号进行 EMD,得到8个本征模态 函数,将各个 IMF 的傅里叶频谱与原始信号比较,可 以发现微多普勒频谱出现在除 IMF1 以外的信号函 数中。图2为 IMF1 和减去 IMF1 剩余信号的时域 图。IMF1 表示了高频的本征模态函数,这部分包含 了大部分的噪声,而剩余信号具有明显的振荡周期。 通过图3和图4的 SPWVD,可以发现信号的图谱信 息明显被强噪声所掩盖。通过图5,对原始信号进行 EMD后,剩余信号的希尔伯特谱表明噪声被明显地 滤去,可以清晰地呈现微多普勒信息。由于剩余信号 还存有噪声干扰,希尔伯特谱为非理想的正弦曲线, 但 SNR 已经被提高到 14 dB。

4.2 无噪声情况下的弱调制微多普勒信号

对于弱调制($\beta \le 1$)微多普勒信号,SPWVD 无法 有效地提取瞬时频率。假设调制频率 $f_s = 20$ Hz,调 制指数 $\beta = 0.1$,恒定频率 $f_c = 60$ Hz,采样频率 $f_s =$ 1000 Hz。根据(2)式峰到峰的调制频率为 2×(0.1×20)=4 Hz,SPWVD 无法实现有效的时频 定位。其中调制周期为 0.05 s。图 6 为时间窗长 g= 0.003 s,频率窗长*h*=0.12 s下的 SPWVD 分布,图 7 为 *g*=0.001 s,*h*=0.05 s 时的 SPWVD 分布。对于 瞬时频率特征,几乎无法得到任何有用的信息。

图 8 为 g = 0.003 s, h = 0.5 s 的 SPWVD 时频 图,可以得到较一个稳定的时频图。(60±20) Hz 的 位置出现调制频率,和图 9 的傅里叶谱一致。但不能 进一步得到更多的特征信息,并且可以看到在(60±

图 3 强噪声微多普勒信号的 SPWVD

Fig. 3 SPWVD of micro-Doppler signal with severe noise

图 4 IMF1 的 SPWVD Fig. 4 SPWVD of IMF1

10) Hz产生了很强的干扰项,给微多普勒特征的提取带来很大困难。

通过 HHT, EMD 得到的结果为信号本身,这 是由于原始信号满足 IMF 的条件。图 10为该信号 的希尔伯特谱,图 11 为该信号的理论结果。通过比 较,可以发现希尔伯特谱在时频域上能够准确地得 到微多普勒的瞬时频率,其振动参数也可以很容易 得到。

图 6 弱调制信号的 SPWVD (g=0.003 s, h=0.12 s) Fig. 6 SPWVD of weak modulated signal (g=0.003 s, h=0.12 s)

图 7 弱调制信号的 SPWVD (g=0.001 s, h=0.05 s) Fig. 7 SPWVD of weak modulated signal (g=0.001 s, h=0.05 s)

图 8 弱调制信号的 SPWVD (g=0.003 s, h=0.5 s)Fig. 8 SPWVD of weak modulated signal (g=0.003 s, h=0.5 s)

4.3 强噪声背景下的弱调制微多普勒信号

为了更符合实际情况,假设的信道条件为弱调制的微多普勒信号被掩盖在强噪声下。调制频率 $f_{s}=40$ Hz,调制指数 $\beta=0.3$,恒定频率 $f_{c}=60$ Hz, 采样频率 $f_{s}=1000$ Hz,SNR 为 0.7 dB。从图 12 的 SPWVD 中,在(60±40) Hz 的两个对称的峰值

Fig. 9 Fourier spectrum of weak modulated signal

图 10 弱调制微多普勒信号的希尔伯特谱

频率被噪声所掩盖。然而通过 EMD,可以分解得到 9个 IMF,通过与原始信号比较这些 IMF 的傅里叶 谱,可知第 6个 IMF 包含了微多普勒成分,剩余的 主要为噪声。图 13为 IMF6 的希尔伯特谱,可以得 到微多普勒的周期和振幅。通过对比图 14 的理论 微多普勒频率,发现两图匹配得很好。

对于真实世界中的激光微多普勒振动信号,背 景噪声、设备噪声等将对其造成相应的污染,尤其是

图 12 强噪声弱调制微多普勒信号的 SPWVD Fig. 12 SPWVD of weak modulated signal buried in noise

图 14 强噪声弱调制微多普勒信号理论瞬时频率

背景噪声。信道传输中的背景噪声主要为高斯白噪 声的,这些噪声使微多普勒信号受到严重干扰,而且 又由于现实振动目标的振动较为微弱,将振动信号 形成相应的弱调制情况,对于传统的科恩时频分布, 微多普勒特征参数的提取十分困难^[10]。而对于 HHT,由于其 EMD 的自适应性和希尔伯特瞬时谱 的细节分析能力,避免了传统时频分析不足,因此 HHT 技术对于分析真实世界的微多普勒振动信号 具有很高的可行性。

结 5 论

HHT 的时频分布被引入到微多普勒信号的分 析和特征提取中,通过不同信道条件下的仿真,可以 证明 HHT 在微多普勒信号分析中的优越性和有效 性。经过与科恩类分布进行比较,可以得到一下 结论:

1) 希尔伯特谱不存在为抑制交叉项而降低联 合时频分辨率的问题,可以精确地得到目标的瞬时 频率。

2) HHT 不需要使用预定义的核函数,也就不 再受窗长度的限制。

3) 经验模态分解可以有效地降低噪声和其他 反射目标的干扰,提高 SNR。

4) 对于弱调制微多普勒信号,希尔伯特谱可以 清晰描绘出正弦频率调制,振动参数与实际相吻合。

然而根据 HHT 的原理,希尔伯特谱很大程度上 受 EMD 的影响,因为没有一定的规则来设置 EMD 参数,不同的参数必然导致希尔伯特谱的改变。

耂 文 献

- 1 V C Chen, R D Lipps. Time frequency signatures of micro-Doppler phenomenon for feature extraction $\lceil C \rceil$. SPIE, 2000, 4056: 220-226.
- 2 Zhuang Zhaowen, Liu Yongxiang, Li Xiang. The achievements

of target characteristic with micro-motion []]. Acta Electronica Sinica, 2007, 35(3), 520-525.

庄钊文,刘永祥,黎 湘. 目标微动特性研究进展[J]. 电子学 报,2007,35(3):520-525.

- 3 L Cohen. Time-Frequency Analysis: Theory and Applications [M]. Xi'an: Xi'an Jiaotong University Press, 1998. L科恩, 时-频分析: 理论与应用[M]. 西安: 西安交通大学出版 社,1998.
- 4 L Cohen. Time-Frequency Analysis: Upper Saddle River M]. New Jersey: Prentice-Hall Press, 1995.
- 5 P Setlur, M Amin, T Thayaparzn. Micro-Doppler signal estimation for vibrating and rotating targets[C]. In Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005, 2: 639-642.
- 6 N E Huang, M L Wu, S R Long, et al. . A confidence limit for the empirical mode decomposition and Hilbert spectral analysis [C]. Proceedings of the Royal Society of London, Series A, 2003, 459(2037): 2317-2345.
- 7 V C Chen. Micro-Doppler effect of micro-motion dynamics a review[C]. SPIE,2003, 5102: 240-249.

8 Zhou Jian, Wei Guo, Long Xingwu. Cremer-Rao lower bound for parameter estimation of mobile laser Doppler velocimeter [J]. Acta Optica Sinica, 2011, 31(10): 1012001. 周 健,魏 国,龙兴武.车载激光多普勒测速仪参数估计的 Cramer-Rao下限[J]. 光学学报, 2011, 31(10): 1012001

- 9 Yanbing Li, Lan Du, Hongwei Liu. Analysis of micro-Doppler signatures of moving vehicles by using empirical mode decomposition [C]. IEEE CIE International Conference on Radar, 2011, (1): 600-603.
- 10 Dong Jing, Chen Rui, Li Xiaolong, et al.. Lidar coherent detection and feature extraction of moving target based on micro-Doppler effect [J]. Chinese J Lasers, 2012, 39(10): 1014001. 董 晶,陈 蕊,李小龙,等.运动目标微多普勒效应的激光雷 达相干探测及特征提取[J]. 中国激光, 2012, 39(10): 1014001

栏目编辑: 何卓铭